MFCC and its applications in speaker recognition
نویسنده
چکیده
Speech processing is emerged as one of the important application area of digital signal processing. Various fields for research in speech processing are speech recognition, speaker recognition, speech synthesis, speech coding etc. The objective of automatic speaker recognition is to extract, characterize and recognize the information about speaker identity. Feature extraction is the first step for speaker recognition. Many algorithms are suggested/developed by the researchers for feature extraction. In this work, the Mel Frequency Cepstrum Coefficient (MFCC) feature has been used for designing a text dependent speaker identification system. Some modifications to the existing technique of MFCC for feature extraction are also suggested to improve the speaker recognition efficiency.
منابع مشابه
تشخیص لهجه های زبان فارسی از روی سیگنال گفتار با استفاده از روش های استخراج ویژگی کارآمد و ترکیب طبقه بندها
Speech recognition has achieved great improvements recently. However, robustness is still one of the big problems, e.g. performance of recognition fluctuates sharply depending on the speaker, especially when the speaker has strong accent and difference Accents dramatically decrease the accuracy of an ASR system. In this paper we apply three new methods of feature extraction including Spectral C...
متن کاملImproved Closed Set Text-Independent Speaker Identification by Combining MFCC with Evidence from Flipped Filter Banks
A state of the art Speaker Identification (SI) system requires a robust feature extraction unit followed by a speaker modeling scheme for generalized representation of these features. Over the years, Mel-Frequency Cepstral Coefficients (MFCC) modeled on the human auditory system has been used as a standard acoustic feature set for SI applications. However, due to the structure of its filter ban...
متن کاملSkew Gaussian Mixture Models for Speaker Recognition
The current paper proposes skew Gaussian mixture models for speaker recognition and an associated algorithm for its training from experimental data. Speaker identification experiments were conducted, in which speakers were modeled using the familiar Gaussian mixture models (GMM), and the new skewGMM. Each model type was evaluated using two sets of feature vectors, the mel-frequency cepstral coe...
متن کاملFeature Extraction and Classification for Automatic Speaker Recognition System – A Review
Automatic speaker recognition (ASR) has found immense applications in the industries like banking, security, forensics etc. for its advantages such as easy implementation, more secure, more user friendly. To have a good recognition rate is a pre-requisite for any ASR system which can be achieved by making an optimal choice among the available techniques for ASR. In this paper, different techniq...
متن کاملVector Quantization Approach for Speaker Recognition using MFCC and Inverted MFCC
Front-end or feature extractor is the first component in an automatic speaker recognition system. Feature extraction transforms the raw speech signal into a compact but effective representation that is more stable and discriminative than the original signal. Since the front-end is the first component in the chain, the quality of the later components (speaker modeling and pattern matching) is st...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010